Search results
Results from the WOW.Com Content Network
An allylic rearrangement or allylic shift is an organic chemical reaction in which reaction at a center vicinal to a double bond causes the double bond to shift to an adjacent pair of atoms: It is encountered in both nucleophilic and electrophilic substitution , although it is usually suppressed relative to non-allylic substitution.
In organic chemistry, an allyl group is a substituent with the structural formula −CH 2 −HC=CH 2. It consists of a methylene bridge ( −CH 2 − ) attached to a vinyl group ( −CH=CH 2 ). [ 1 ] [ 2 ] The name is derived from the scientific name for garlic , Allium sativum .
The Tsuji–Trost reaction (also called the Trost allylic alkylation or allylic alkylation) is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl
Allylic strain in an olefin. Allylic strain (also known as A 1,3 strain, 1,3-allylic strain, or A-strain) in organic chemistry is a type of strain energy resulting from the interaction between a substituent on one end of an olefin (a synonym for an alkene) with an allylic substituent on the other end. [1]
Carbonyl allylation has been employed in the synthesis of polyketide natural products and other oxygenated molecules with a contiguous array of stereocenters. For example, allylstannanation of a threose-derived aldehyde affords the macrolide antascomicin B, which structurally resembles FK506 and rapamycin, and is a potent binder of FKBP12. [12]
The Kharasch–Sosnovsky reaction is a method that involves using a copper or cobalt salt as a catalyst to oxidize olefins at the allylic position, subsequently condensing a peroxy ester (e.g. tert-Butyl peroxybenzoate) or a peroxide resulting in the formation of allylic benzoates or alcohols via radical oxidation. [1]
The Mislow–Evans rearrangement is a name reaction in organic chemistry. It is named after Kurt Mislow who reported the prototypical reaction in 1966, [1] and David A. Evans who published further developments. [2] The reaction allows the formation of allylic alcohols from allylic sulfoxides in a 2,3-sigmatropic rearrangement. [3]
In organic chemistry, the ene reaction (also known as the Alder-ene reaction by its discoverer Kurt Alder in 1943) is a chemical reaction between an alkene with an allylic hydrogen (the ene) and a compound containing a multiple bond (the enophile), in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift.