Search results
Results from the WOW.Com Content Network
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.
We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.
For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.
Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information will indicates that the maximum appears to be "blunt", that is, there are many points in the neighborhood that provide a similar log-likelihood. Conversely, a high Fisher ...
There are several reasons to prefer the likelihood ratio test or the Lagrange multiplier to the Wald test: [18] [19] [20] Non-invariance: As argued above, the Wald test is not invariant under reparametrization, while the likelihood ratio tests will give exactly the same answer whether we work with R, log R or any other monotonic transformation ...