enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.

  5. Akaike information criterion - Wikipedia

    en.wikipedia.org/wiki/Akaike_information_criterion

    The likelihood function for the second model thus sets p = q in the above equation; so the second model has one parameter. We then maximize the likelihood functions for the two models (in practice, we maximize the log-likelihood functions); after that, it is easy to calculate the AIC values of the models. We next calculate the relative likelihood.

  6. Vuong's closeness test - Wikipedia

    en.wikipedia.org/wiki/Vuong's_closeness_test

    The numerator is the difference between the maximum likelihoods of the two models, corrected for the number of coefficients analogous to the BIC, the term in the denominator of the expression for Z, , is defined by setting equal to either the mean of the squares of the pointwise log-likelihood ratios , or to the sample variance of these values ...

  7. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number ...

  8. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is

  9. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...