Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
Iodine-131 (131 I) is the most common RNT worldwide and uses the simple compound sodium iodide with a radioactive isotope of iodine. The patient (human or animal) may ingest an oral solid or liquid amount or receive an intravenous injection of a solution of the compound. The iodide ion is selectively taken up by the thyroid gland.
It requires special precautions and licensing, since radioactive substances are used. [citation needed] In contrast, an immunoradiometric assay (IRMA) is an immunoassay that uses radiolabeled molecules but in an immediate rather than stepwise way. A radioallergosorbent test (RAST) is an example of radioimmunoassay.
Diabetes Treatment. Medications are a big part of how diabetes is managed. The type of medication prescribed can depend on the type of diabetes you have. For example, insulin is used to treat type ...
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).
The application of radioactive iodine in the diagnosis and treatment of thyroid disease is the cornerstone of nuclear medicine. [5] Barbara Bush, who was successfully treated with radioiodine, wrote to Vitta Hertz, his widow, “It is comforting to know that so many people are well because of the scientific expertise of people like Dr. Hertz ...
Iodinated contrast contains iodine.It is the main type of radiocontrast used for intravenous administration.Iodine has a particular advantage as a contrast agent for radiography because its innermost electron ("k-shell") binding energy is 33.2 keV, similar to the average energy of x-rays used in diagnostic radiography.
Another well-known radioactive isotope used in medicine is Iodine-131, which is used as a radioactive label for some radiopharmaceutical therapies or the treatment of some types of thyroid cancer. [2]