Search results
Results from the WOW.Com Content Network
For simple carboxylates, the acetate complexes are illustrative. Most transition metal acetates are mixed ligand complexes. One common example is hydrated nickel acetate, Ni(O 2 CCH 3) 2 (H 2 O) 4, which features intramolecular hydrogen-bonding between the uncoordinated oxygens and the protons of aquo ligands. Stoichiometrically simple ...
The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.
On the left, a filled pi-orbital on C 2 H 4 overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on C 2 H 4 overlaps with a filled d-orbital on the metal. The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes.
The isolobal analogy can also be used with isoelectronic fragments having the same coordination number, which allows charged species to be considered. For example, Re(CO) 5 is isolobal with CH 3 and therefore, [Ru(CO) 5] + and [Mo(CO) 5] − are also isolobal with CH 3. Any 17-electron metal complex would be isolobal in this example.
A metal-to-ligand charge transfer (MLCT) transition will be most likely when the metal is in a low oxidation state and the ligand is easily reduced. In general charge transfer transitions result in more intense colours than d–d transitions. d–d transitions. An electron jumps from one d orbital to another. In complexes of the transition ...
In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive. The class of complexes is extensive.
Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well.
Some intermetallic materials, e.g., do exhibit metal clusters reminiscent of molecules; and these compounds are more a topic of chemistry than of metallurgy. The formation of the clusters could be seen as a way to 'condense out' (localize) the electron-deficient bonding into bonds of a more localized nature.