Search results
Results from the WOW.Com Content Network
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence , depends on the author’s style. x + 5 = y + 2 ⇔ x + 3 = y {\displaystyle x+5=y+2\Leftrightarrow x+3=y}
For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as: ()
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...
from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) Importation (()) (()) [38] If p then (if q then r) is equivalent to if p and q then r: Idempotence of disjunction () [107]
If x is true, then the result of expression x → y is taken to be that of y (e.g. if x is true and y is false, then x → y is also false). But if x is false, then the value of y can be ignored; however, the operation must return some Boolean value and there are only two choices. So by definition, x → y is true when x is false (relevance ...