Search results
Results from the WOW.Com Content Network
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
These are often denoted by uppercase letters such as P, Q and R. Examples: In P(x), P is a predicate symbol of valence 1. One possible interpretation is "x is a man". In Q(x,y), Q is a predicate symbol of valence 2. Possible interpretations include "x is greater than y" and "x is the father of y".
For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as: ()
from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) Importation (()) (()) [38] If p then (if q then r) is equivalent to if p and q then r: Idempotence of disjunction () [107]
In predicate logic, a predicate P over some domain is called decidable if for every x in the domain, either P(x) holds, or the negation of P(x) holds. This is not trivially true constructively. Markov's principle then states: For a decidable predicate P over the natural numbers, if P cannot be false for all natural numbers n, then it is true ...
The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...
The examples "is greater than", "is at least as great as", and "is equal to" are transitive relations on various sets. As are the set of real numbers or the set of natural numbers: whenever x > y and y > z, then also x > z whenever x ≥ y and y ≥ z, then also x ≥ z whenever x = y and y = z, then also x = z. More examples of transitive ...
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...