Search results
Results from the WOW.Com Content Network
A Round Robin preemptive scheduling example with quantum=3. Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. [1] [2] As the term is generally used, time slices (also known as time quanta) [3] are assigned to each process in equal portions and in circular order, handling all processes without priority (also known as cyclic executive).
One common method of logically implementing the fair-share scheduling strategy is to recursively apply the round-robin scheduling strategy at each level of abstraction (processes, users, groups, etc.) The time quantum required by round-robin is arbitrary, as any equal division of time will produce the same results.
In weighted round robin scheduling, the fraction of bandwidth used depend on the packet's sizes. Compared with WFQ scheduler that has complexity of O(log(n)) ( n is the number of active flows/queues ), the complexity of DRR is O(1) , if the quantum Q i {\displaystyle Q_{i}} is larger than the maximum packet size of this flow.
Round Robin: This is similar to the AIX Version 3 scheduler round-robin scheme based on 10 ms time slices. When a RR thread has control at the end of the time slice, it moves to the tail of the queue of dispatchable threads of its priority. Only fixed-priority threads can have a Round Robin scheduling policy.
Weighted round robin [1] is a generalisation of round-robin scheduling. It serves a set of queues or tasks. Whereas round-robin cycles over the queues or tasks and gives one service opportunity per cycle, weighted round robin offers to each a fixed number of opportunities, as specified by the configured weight which serves to influence the ...
In a multi-level queue scheduling algorithm, there will be 'n' number of queues, where 'n' is the number of groups the processes are classified into. Each queue will be assigned a priority and will have its own scheduling algorithm like Round-robin scheduling [1]: 194 or FCFS. For the process in a queue to execute, all the queues of priority ...
Fair queuing is an example of a max-min fair packet scheduling algorithm for statistical multiplexing and best-effort networks, since it gives scheduling priority to users that have achieved lowest data rate since they became active. In case of equally sized data packets, round-robin scheduling is max-min fair.
Weighted fair queueing (WFQ) is a network scheduling algorithm. WFQ is both a packet-based implementation of the generalized processor sharing (GPS) policy, and a natural extension of fair queuing (FQ). Whereas FQ shares the link's capacity in equal subparts, WFQ allows schedulers to specify, for each flow, which fraction of the capacity will ...