enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Alternatively, it is defined as the product of the projection of the first vector onto the second vector and the magnitude of the second vector.

  4. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    The particular form of the inner product on vectors (e.g., or ) determines a reality structure (up to a factor of -1) by requiring ¯ =, whenever X is a matrix associated to a real vector. Thus K = i C is the reality structure in Euclidean signature , and K = Id is that for signature . With a reality structure in hand, one has the following ...

  5. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    A ⁠ ⁠-graded vector space structure can be established on a geometric algebra by use of the exterior product that is naturally induced by the geometric product. Since the geometric product and the exterior product are equal on orthogonal vectors, this grading can be conveniently constructed by using an orthogonal basis ⁠ {, …,} ⁠.

  6. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  8. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...

  9. Dot product representation of a graph - Wikipedia

    en.wikipedia.org/wiki/Dot_product_representation...

    A dot product representation of a simple graph is a method of representing a graph using vector spaces and the dot product from linear algebra. Every graph has a dot ...