Search results
Results from the WOW.Com Content Network
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
To solve this problem, Kociemba devised a lookup table that provides an exact heuristic for . [18] When the exact number of moves needed to reach G 1 {\displaystyle G_{1}} is available, the search becomes virtually instantaneous: one need only generate 18 cube states for each of the 12 moves and choose the one with the lowest heuristic each time.
For a grid map from a video game, using the Taxicab distance or the Chebyshev distance becomes better depending on the set of movements available (4-way or 8-way). If the heuristic h satisfies the additional condition h ( x ) ≤ d ( x , y ) + h ( y ) for every edge ( x , y ) of the graph (where d denotes the length of that edge), then h is ...
Where func receives as arguments the result of the previous operation (or the initial value on the first iteration); the current item; the current item's index or key; and a reference to the obj: Clojure (reduce func initval list) (reduce func initval (reverse list)) (reduce func list) (reduce func (reverse list)) See also clojure.core.reducers ...
Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.
In computer science, jump point search (JPS) is an optimization to the A* search algorithm for uniform-cost grids. It reduces symmetries in the search procedure by means of graph pruning, [1] eliminating certain nodes in the grid based on assumptions that can be made about the current node's neighbors, as long as certain conditions relating to the grid are satisfied.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...