Search results
Results from the WOW.Com Content Network
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling function RIPEMD: 128 bits hash RIPEMD-128: 128 bits hash RIPEMD-160: 160 bits hash RIPEMD-256: 256 bits hash RIPEMD-320: 320 bits hash SHA-1: 160 bits Merkle–Damgård construction: SHA-224: 224 bits Merkle–Damgård construction: SHA-256: 256 bits ...
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
This table denotes, if a cryptography library provides the technical requisites for FIPS 140, and the status of their FIPS 140 certification (according to NIST's CMVP search, [27] modules in process list [28] and implementation under test list). [29]
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
As of October 2012, CNSSP-15 [4] stated that the 256-bit elliptic curve (specified in FIPS 186-2), SHA-256, and AES with 128-bit keys are sufficient for protecting classified information up to the Secret level, while the 384-bit elliptic curve (specified in FIPS 186-2), SHA-384, and AES with 256-bit keys are necessary for the protection of Top ...
Function Mix Inputs: V a, V b, V c, V d four 8-byte word entries from the work vector V x, y two 8-byte word entries from padded message m Output: V a, V b, V c, V d the modified versions of V a, V b, V c, V d V a ← V a + V b + x with input V d ← (V d xor V a) rotateright 32 V c ← V c + V d no input V b ← (V b xor V c) rotateright 24 V ...
The revision DTLS 1.2 based on TLS 1.2 was published in January 2012. [33] TLS 1.3 (2018) specified in RFC 8446 includes major optimizations and security improvements. QUIC (2021) specified in RFC 9000 and DTLS 1.3 (2022) specified in RFC 9147 builds on TLS 1.3. The publishing of TLS 1.3 and DTLS 1.3 obsoleted TLS 1.2 and DTLS 1.2.