enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyruvic acid - Wikipedia

    en.wikipedia.org/wiki/Pyruvic_acid

    Jöns Jacob Berzelius characterized this other acid the following year and named pyruvic acid because it was distilled using heat. [5] [6] The correct molecular structure was deduced by the 1870s. [7] Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid and is miscible with water. [8]

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Without oxygen, pyruvate (pyruvic acid) is not metabolized by cellular respiration but undergoes a process of fermentation. The pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. This serves the purpose of oxidizing the electron carriers so ...

  4. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]

  5. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.

  6. Fermentation - Wikipedia

    en.wikipedia.org/wiki/Fermentation

    The high concentration of lactic acid (the final product of fermentation) drives the equilibrium backwards (Le Chatelier's principle), decreasing the rate at which fermentation can occur and slowing down growth. Ethanol, into which lactic acid can be easily converted, is volatile and will readily escape, allowing the reaction to proceed easily.

  7. Oxidative decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_decarboxylation

    Multiple copies of three different enzymes compose a supramolecular structure that coordinates a four-step process converting the α-keto acid pyruvate to the thioester (with coenzyme A) of acetate, as well as electron transfer (redox) reactions that yield NADH. Five cofactors participate in the reactions of the complex.

  8. Ethanol fermentation - Wikipedia

    en.wikipedia.org/wiki/Ethanol_fermentation

    Fermentation does not require oxygen. If oxygen is present, some species of yeast (e.g., Kluyveromyces lactis or Kluyveromyces lipolytica) will oxidize pyruvate completely to carbon dioxide and water in a process called cellular respiration, hence these species of yeast will produce ethanol only in an anaerobic environment (not cellular ...

  9. Pyruvate decarboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylase

    This can react as a nucleophile at the ketone carbon of pyruvic acid. [3] During the decarboxylation of pyruvate, the TPP stabilizes the carbanion intermediates as an electrophile by noncovalent bonds. [4] Specifically, the pyridyl nitrogen N1' and the 4'-amino group of TPP are essential for the catalytic function of the enzyme-TPP complex. [5]