enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    For this reason, the blood flow velocity is the fastest in the middle of the vessel and slowest at the vessel wall. In most cases, the mean velocity is used. [18] There are many ways to measure blood flow velocity, like videocapillary microscoping with frame-to-frame analysis, or laser Doppler anemometry. [19]

  3. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I–V curve) is nonlinear (or non-ohmic).

  4. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  5. Vascular resistance - Wikipedia

    en.wikipedia.org/wiki/Vascular_resistance

    Vascular resistance is the resistance that must be overcome for blood to flow through the circulatory system.The resistance offered by the systemic circulation is known as the systemic vascular resistance or may sometimes be called by another term total peripheral resistance, while the resistance caused by the pulmonary circulation is known as the pulmonary vascular resistance.

  6. Fåhræus effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus_effect

    The aim was to ascertain whether blood obeyed the law of Poiseuille (Hagen–Poiseuille equation). It was Hess in 1915 who proved that blood obeys the poiseuille law at high flow and low shear. The non-Newtonian effects were due to the elastic deformation of red blood cells. Fahraeus entered the scene in 1917 through his observation that ...

  7. Airway resistance - Wikipedia

    en.wikipedia.org/wiki/Airway_resistance

    In fluid dynamics, the Hagen–Poiseuille equation is a physical law that gives the pressure drop in a fluid flowing through a long cylindrical pipe. The assumptions of the equation are that the flow is laminar viscous and incompressible and the flow is through a constant circular cross-section that is substantially longer than its diameter.

  8. Impedance cardiography - Wikipedia

    en.wikipedia.org/wiki/Impedance_cardiography

    These forces demonstrate themselves to the clinician as paired values of blood flow and blood pressure measured simultaneously at the output node of the left heart. Hemodynamics is a fluidic counterpart to the Ohm's law in electronics: pressure is equivalent to voltage, flow to current, vascular resistance to electrical resistance and ...

  9. Murray's law - Wikipedia

    en.wikipedia.org/wiki/Murray's_law

    Poiseuille flow in a cylinder of diameter h; the velocity field at height y is u(y).. Murray's original derivation uses the first set of assumptions described above. She begins with the Hagen–Poiseuille equation, which states that for fluid of dynamic viscosity μ, flowing laminarly through a cylindrical pipe of radius r and length l, the volumetric flow rate Q associated with a pressure ...