Search results
Results from the WOW.Com Content Network
Endothelial cells accomplish these feats by using depolarization to alter their structural strength. When an endothelial cell undergoes depolarization, the result is a marked decrease in the rigidity and structural strength of the cell by altering the network of fibers that provide these cells with their structural support.
In the human brain microvascular endothelial cells, two systems initiate the choline absorption. The first system is known as the Choline transporter-like protein 1, or CTL1. The second system is the Choline transporter-like protein 2, or CTL2. Those two systems are found on the plasma membrane of the brain microvascular endothelial cells.
The endothelium (pl.: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. [1] The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel wall.
When the endothelial cell in the tunica intima of an artery is stretched it is likely that the endothelial cell may signal constriction to the muscle cell layer in a paracrine fashion. Increase in blood pressure may cause depolarisation of the affected myocytes as well or endothelial cells alone.
There are two general pathways that explain EDH Diffusible factors are endothelium-derived substances that are able to pass through internal elastic lamina (IEL), reach underlying vascular smooth muscle cells at a concentration sufficient to activate ion channels, and initiate smooth muscle hyperpolarization and relaxation. [1]
Capillary walls contain of a monolayer of endothelial cells. There are two ways for molecules to diffuse through the endothelial monolayer: through gaps between the cells or directly through the cells. Molecules diffuse through the capillary walls due to concentration gradients. Diffusion between the cells changes depending upon the type of ...
A variety of cellular changes can trigger gating, depending on the ion channel, including changes in voltage across the cell membrane (voltage-gated ion channels), chemicals interacting with the ion channel (ligand-gated ion channels), changes in temperature, [4] stretching or deformation of the cell membrane, addition of a phosphate group to ...
Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the cardiac action potential). However, the main excitable cell is the neuron, which also has the simplest mechanism for the action potential. [citation needed]