Search results
Results from the WOW.Com Content Network
The position alpha to the carbonyl group (C=O) in a ketone is easily halogenated. This is due to its ability to form an enolate (C=C−O −) in basic solution, or an enol (C=C−OH) in acidic solution. An example of alpha halogenation is the mono-bromination of acetone ((CH 3) 2 C=O), carried out under either acidic or basic conditions, to ...
Remarkably, ketone halogenation also occurs in biological systems, particularly in marine algae, where dibromoacetaldehyde, bromoacetone, 1, l,l -tribromoacetone, and other related compounds have been found. The halogenation is a typical α-substitution reaction that proceeds by acid catalyzed formation of an enol intermediate. [1]: 846
They are often prepared by reaction of the acid or the ester with halogen: RCH 2 CO 2 R' + Cl 2 → RCHClCO 2 R' + HCl. A related method is the Hell-Volhard-Zelinsky halogenation. Amino acids are susceptible to diazotization in the presence of chloride, a process that affords chiral 2-chloro carboxylic acids and esters. [1]
The general structure is RR′C(X)C(=O)R where R is an alkyl or aryl residue and X any one of the halogens. The preferred conformation of a halo ketone is that of a cisoid with the halogen and carbonyl sharing the same plane as the steric hindrance with the carbonyl alkyl group is generally larger.
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1] This kind of conversion is in fact so common that a comprehensive overview is challenging.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
The Darzens reaction (also known as the Darzens condensation or glycidic ester condensation) is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester".