Search results
Results from the WOW.Com Content Network
From any point on the circumcircle of a triangle, the nearest points on each of the three extended sides of the triangle are collinear in the Simson line of the point on the circumcircle. The lines connecting the feet of the altitudes intersect the opposite sides at collinear points. [3]: p.199
By extension, k points in a plane are collinear if and only if any (k–1) pairs of points have the same pairwise slopes. In Euclidean geometry, the Euclidean distance d(a,b) between two points a and b may be used to express the collinearity between three points by: [3] [4]
The line through these points is the Simson line of P, named for Robert Simson. [2] The concept was first published, however, by William Wallace in 1799, [3] and is sometimes called the Wallace line. [4] The converse is also true; if the three closest points to P on three lines are collinear, and no two of the lines are parallel, then P lies on ...
The three apex points always define a plane in three dimensions, and all three centers of similarity must lie in the plane containing the circular bases. Hence, the three centers must lie on the intersection of the two planes, which must be a line in three dimensions. [2] Monge's theorem can also be proved by using Desargues' theorem.
A set of 20 points in a 10 × 10 grid, with no three points in a line. The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line.
The equations originate from the central projection of a point of the object through the optical centre of the camera to the image on the sensor plane. [1] The three points P, Q and R are projected on the plane S through the projection centre C x- and z-axis of the projection of P through the projection centre C
Each line produces three possibilities per point: the point can be in one of the two open half-planes on either side of the line, or it can be on the line. Two points can be considered to be equivalent if they have the same classification with respect to all of the lines.
There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: [2] Given a point and a line, there is a unique line which contains the point and is parallel to the line.