Search results
Results from the WOW.Com Content Network
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...
Then, calculate the VIF factor for ^ with the following formula : = where R 2 i is the coefficient of determination of the regression equation in step one, with on the left hand side, and all other predictor variables (all the other X variables) on the right hand side.
The Nash–Sutcliffe coefficient masks important behaviors that if re-cast can aid in the interpretation of the different sources of model behavior in terms of bias, random, and other components. [11] The alternate Kling–Gupta efficiency is intended to improve upon NSE by incorporating bias and variance terms. [12]
Coefficient of determination (the R-squared measure of goodness of fit); ... The general formula for G is = ... Computational Statistics & Data Analysis, 54 (2): ...
In statistics, canonical analysis (from Ancient Greek: κανων bar, measuring rod, ruler) belongs to the family of regression methods for data analysis. Regression analysis quantifies a relationship between a predictor variable and a criterion variable by the coefficient of correlation r, coefficient of determination r 2, and the standard regression coefficient β.
The coefficient of determination then becomes = = and is the fraction of variance of that is explained by . Its square root is Pearson's product-moment correlation r {\displaystyle r} . There are several other correlation coefficients that have PRE interpretation and are used for variables of different scales: