Ads
related to: industrial robot arm design study setfreshdiscover.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Victor Scheinman's MIT Arm, built for MIT's Artificial Intelligence Lab ca. 1972, the first arm designed with a 321 kinematic structure. 321 kinematic structure is a design method for robotic arms (serial manipulators), invented by Donald L. Pieper and used in most commercially produced robotic arms.
The PUMA (Programmable Universal Machine for Assembly, or Programmable Universal Manipulation Arm) is an industrial robotic arm developed by Victor Scheinman at pioneering robot company Unimation. Initially developed by Unimation for General Motors , the PUMA was based on earlier designs Scheinman invented while at Stanford University based on ...
China is the largest industrial robot market [21]: 256 with 154,032 units sold in 2018. [20] China had the largest operational stock of industrial robots, with 649,447 at the end of 2018. [22] The United States industrial robot-makers shipped 35,880 robot to factories in the US in 2018 and this was 7% more than in 2017. [23]
A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot ) or translational (linear ...
A typical industrial robot is built with fixed length segments that are connected either at joints whose angles can be controlled, or along linear slides whose length can be controlled. If each angle and slide distance is known, the position and orientation of the end of the robot arm relative to its base can be computed efficiently with simple ...
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [1] [2] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation.
The SCARA is a type of industrial robot. The acronym stands for Selective Compliance Assembly Robot Arm [1] or Selective Compliance Articulated Robot Arm. [2] By virtue of the SCARA's parallel-axis joint layout, the arm is slightly compliant in the X-Y direction but rigid in the Z direction, hence the term selective compliance. This is ...
Serial robots usually have six joints, because it requires at least six degrees of freedom to place a manipulated object in an arbitrary position and orientation in the workspace of the robot. A popular application for serial robots in today's industry is the pick-and-place assembly robot, called a SCARA robot, which has four degrees of freedom.
Ads
related to: industrial robot arm design study setfreshdiscover.com has been visited by 100K+ users in the past month