Search results
Results from the WOW.Com Content Network
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:
Logarithmic gamma function in the complex plane from −2 − 2i to 2 + 2i with colors. is often used since it allows one to determine function values in one strip of width 1 in z from the neighbouring strip. In particular, starting with a good approximation for a z with large real part one may go step by step down to the desired z.
The principal nth root of a positive number can be computed using logarithms. Starting from the equation that defines r as an n th root of x , namely r n = x , {\displaystyle r^{n}=x,} with x positive and therefore its principal root r also positive, one takes logarithms of both sides (any base of the logarithm will do) to obtain
The pH of a solution is defined as the negative logarithm of the concentration of H+, and the pOH is defined as the negative logarithm of the concentration of OH-. For example, the pH of a 0.01M solution of hydrochloric acid (HCl) is equal to 2 (pH = −log 10 (0.01)), while the pOH of a 0.01M solution of sodium hydroxide (NaOH) is equal to 2 ...
Toggle Properties subsection. 10.1 Limits of compositions of functions. ... 10.2.4 Logarithmic functions. 10.3 L'Hôpital's rule. 10.4 Summations and integrals. 11 ...
This equation is easily solved for D, yielding the ratio of logarithms (or natural logarithms) appearing in the figures, and giving—in the Koch and other fractal cases—non-integer dimensions for these objects. The Hausdorff dimension is a successor to the simpler, but usually equivalent, box-counting or Minkowski–Bouligand dimension.