Ads
related to: rational mapping examples math questionsteacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Assessment
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.
If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. [1] It maps quadratic irrational numbers to rational numbers on the unit interval , via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the ...
Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.
There has been extensive research on the Fatou set and Julia set of iterated rational functions, known as rational maps. For example, it is known that the Fatou set of a rational map has either 0, 1, 2 or infinitely many components. [3] Each component of the Fatou set of a rational map can be classified into one of four different classes. [4]
For example, Spec k[x] and Spec k(x) and have the same function field (namely, k(x)) but there is no rational map from the former to the latter. However, it is true that any inclusion of function fields of algebraic varieties induces a dominant rational map (see morphism of algebraic varieties#Properties.)
A complex rational function with degree one is a Möbius transformation. Rational functions are representative examples of meromorphic functions. [3] Iteration of rational functions on the Riemann sphere (i.e. a rational mapping) creates discrete dynamical systems. [4] Julia sets for rational maps
Ads
related to: rational mapping examples math questionsteacherspayteachers.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month