Search results
Results from the WOW.Com Content Network
The switch of the nervous system: Based on the evidence listed below, it has been recently conjectured in, [37] that macro glia (and astrocytes in particular) act both as a lossy neurotransmitter capacitor and as the logical switch of the nervous system. I.e., macroglia either block or enable the propagation of the stimulus along the nervous ...
Evidence for the role of astrocytes in the integration and processing of synaptic integration presents itself in a number of ways: Astrocytes are excitable cells: In response to stimuli from any of the three components of the tripartite synapse, astrocytes are capable of producing transient changes in their intracellular calcium concentrations through release of calcium stores from the ...
Immunofluorescence staining of neural progenitor cells (green), vasculature (red), and astrocytes (blue). CSF1R signaling has been found to play important roles in non-myeloid cells such as neural progenitor cells, multipotent cells that are able to self-renew or terminally differentiate into neurons, astrocytes and oligodendrocytes.
The connection between the cardiovascular and nervous system has raised concerns in the training processes for medical students. Neurocardiology is based on an understanding that systems within the body are interconnected. When training within one specialty, doctors are more likely to associate patients' symptoms with their field.
The astrocytes of the glia limitans are responsible for separating the brain into two primary compartments. The first compartment is the immune-privileged brain and spinal cord parenchyma. This compartment contains multiple immunosuppressive cell surface proteins such as CD200 and CD95L and it allows for the release of anti-inflammatory factors.
Astrocytes stained for GFAP (green) and aquaporin-4 (purple) In a study published in 2012, [7] a group of researchers from the University of Rochester, headed by M. Nedergaard, used in-vivo two-photon imaging of small fluorescent tracers to monitor the flow of subarachnoid CSF into and through the brain parenchyma. The two-photon microscopy ...
Since bergmann glia appear to persist in the cerebellum, and perform many of the roles characteristic of astrocytes, they have also been called "specialized astrocytes." [9] Bergmann glia have multiple radial processes that extend across the molecular layer of the cerebellar cortex and terminate at the pial surface as a bulbous endfoot. [11]
The cerebrospinal fluid (CSF) within the skull and spine provides further protection and also buoyancy, and is found in the subarachnoid space between the pia mater and the arachnoid mater. [citation needed] The CSF that is produced in the ventricular system is also necessary for chemical stability, and the provision of nutrients needed by the ...