Search results
Results from the WOW.Com Content Network
The inlet air temperature of the heat sink is therefore higher, which also results in a higher heat-sink base temperature. If there is no air flow around the heat sink, energy cannot be transferred. A heat sink is not a device with the "magical ability to absorb heat like a sponge and send it off to a parallel universe". [2]
Heat sinks provide a path for heat from the LED source to outside medium. Heat sinks can dissipate power in three ways: conduction (heat transfer from one solid to another), convection (heat transfer from a solid to a moving fluid, which for most LED applications will be air), or radiation (heat transfer from two bodies of different surface temperatures through Thermal radiation).
Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers.
Heat sinks function by efficiently transferring thermal energy ("heat") from an object at high temperature to a second object at a lower temperature with a much greater heat capacity. This rapid transfer of thermal energy quickly brings the first object into thermal equilibrium with the second, lowering the temperature of the first object ...
A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2] Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a ...
In a cross-flow, in which one system, usually the heat sink, has the same nominal temperature at all points on the heat transfer surface, a similar relation between exchanged heat and LMTD holds, but with a correction factor. A correction factor is also required for other more complex geometries, such as a shell and tube exchanger with baffles.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A thermal interface material (shortened to TIM) is any material that is inserted between two components in order to enhance the thermal coupling between them [1].A common use is heat dissipation, in which the TIM is inserted between a heat-producing device (e.g. an integrated circuit) and a heat-dissipating device (e.g. a heat sink).