Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Agonist muscles and antagonist muscles are muscles that cause or inhibit a movement. [5] Agonist muscles are also called prime movers since they produce most of the force, and control of an action. [6] Agonists cause a movement to occur through their own activation. [7]
Muscle coactivation occurs when agonist and antagonist muscles (or synergist muscles) surrounding a joint contract simultaneously to provide joint stability, [1] [2] and is suggested to depend crucially on supraspinal processes involved in the control of movement. [3]
Agonist vs. antagonist. In pharmacology the term agonist-antagonist or mixed agonist/antagonist is used to refer to a drug which under some conditions behaves as an agonist (a substance that fully activates the receptor that it binds to) while under other conditions, behaves as an antagonist (a substance that binds to a receptor but does not activate and can block the activity of other agonists).
The muscle performing an action is the agonist, while the muscle which contraction brings about an opposite action is the antagonist. For example, an extension of the lower arm is performed by the triceps as the agonist and the biceps as the antagonist (which contraction will perform flexion over the same joint).
Sherrington, one of the founding figures in neurophysiology, observed that when the central nervous system signals an agonist muscle to contract, inhibitory signals are sent to the antagonist muscle, encouraging it to relax and reduce resistance. This mechanism, known as reciprocal inhibition, is essential for efficient movement and helps ...
A co-agonist works with other co-agonists to produce the desired effect together. NMDA receptor activation requires the binding of both glutamate, glycine and D-serine co-agonists. Calcium can also act as a co-agonist at the IP3 receptor. A selective agonist is selective for a specific type of receptor. E.g.
Physiological antagonism describes the behavior of a substance that produces effects counteracting those of another substance (a result similar to that produced by an antagonist blocking the action of an agonist at the same receptor) using a mechanism that does not involve binding to the same receptor.