enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic group - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_group

    An interesting example is the modular group = (): it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group).

  3. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    The proof was completed by Werner Ballmann about 50 years later. Littlewood–Richardson rule. Robinson published an incomplete proof in 1938, though the gaps were not noticed for many years. The first complete proofs were given by Marcel-Paul Schützenberger in 1977 and Thomas in 1974. Class numbers of imaginary quadratic fields.

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the

  5. List of textbooks on classical mechanics and quantum ...

    en.wikipedia.org/wiki/List_of_textbooks_on...

    Abraham, R.; Marsden, J. E. (2008). Foundations of Mechanics: A Mathematical Exposition of Classical Mechanics with an Introduction to the Qualitative Theory of Dynamical Systems (2nd ed.).

  6. Classical Mechanics (Goldstein) - Wikipedia

    en.wikipedia.org/wiki/Classical_Mechanics...

    Unlike most other books on mechanics, this one elaborates upon the virial theorem. The discussion of canonical and contact transformations, the Hamilton-Jacobi theory, and action-angle coordinates is followed by a presentation of geometric optics and wave mechanics. Eskergian believed this book serves as a bridge to modern physics. [7]

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.

  8. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Antecedent of Playfair's axiom: a line and a point not on the line Consequent of Playfair's axiom: a second line, parallel to the first, passing through the point. In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):

  9. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    This was, in considerable part, influenced by the example Hilbert set in the Grundlagen. A 2003 effort (Meikle and Fleuriot) to formalize the Grundlagen with a computer, though, found that some of Hilbert's proofs appear to rely on diagrams and geometric intuition, and as such revealed some potential ambiguities and omissions in his definitions ...

  1. Related searches geometry 2 column proof examples book of physics class 9 punjab textbook

    proof of geometry wikipediaproof of theorem geometry
    first proof of geometry