enow.com Web Search

  1. Ad

    related to: standard form calculator for parabola graph

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...

  3. Parent function - Wikipedia

    en.wikipedia.org/wiki/Parent_function

    For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4 x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis.

  4. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

  5. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial.

  6. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    3-point-form of a hyperbola's equation — The equation of the hyperbola determined by 3 points = (,), =,,, ,, is the solution of the equation () () = () () for . As an affine image of the unit hyperbola x 2 − y 2 = 1

  7. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...

  8. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)

  9. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.

  1. Ad

    related to: standard form calculator for parabola graph