enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    A similarity measure can take many different forms depending on the type of data being clustered and the specific problem being solved. One of the most commonly used similarity measures is the Euclidean distance, which is used in many clustering techniques including K-means clustering and Hierarchical clustering. The Euclidean distance is a ...

  3. Bibliographic coupling - Wikipedia

    en.wikipedia.org/wiki/Bibliographic_coupling

    Bibliographic coupling, like co-citation, is a similarity measure that uses citation analysis to establish a similarity relationship between documents. Bibliographic coupling occurs when two works reference a common third work in their bibliographies. It is an indication that a probability exists that the two works treat a related subject matter.

  4. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.

  5. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    Herein a heavy-tailed Student t-distribution (with one-degree of freedom, which is the same as a Cauchy distribution) is used to measure similarities between low-dimensional points in order to allow dissimilar objects to be modeled far apart in the map.

  6. Analysis of similarities - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_similarities

    Analysis of similarities (ANOSIM) is a non-parametric statistical test widely used in the field of ecology. The test was first suggested by K. R. Clarke [ 1 ] as an ANOVA -like test, where instead of operating on raw data , operates on a ranked dissimilarity matrix .

  7. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is closely related to distance metric learning.Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality).

  8. Research design - Wikipedia

    en.wikipedia.org/wiki/Research_design

    A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...

  9. Semantic similarity - Wikipedia

    en.wikipedia.org/wiki/Semantic_similarity

    Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity.