Search results
Results from the WOW.Com Content Network
P-Values: The p-value is a measure of the probability that the observed data would occur by chance if the null hypothesis were true. In replication studies p-values help us determine whether the findings can be consistently replicated. A low p-value in a replication study indicates that the results are not likely due to random chance. [6]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method.For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a statistical analysis of a data set should be achieved again with a high degree of reliability when the study is replicated.
It is a common pattern in software testing to send values through test functions and check for correct output. In many cases, in order to thoroughly test functionalities, one needs to test multiple sets of input/output, and writing such cases separately would cause duplicate code as most of the actions would remain the same, only differing in input/output values.
The jackknife technique can be used to estimate (and correct) the bias of an estimator calculated over the entire sample. Suppose is the target parameter of interest, which is assumed to be some functional of the distribution of .
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
The permutation test is designed to determine whether the observed difference between the sample means is large enough to reject, at some significance level, the null hypothesis H that the data drawn from is from the same distribution as the data drawn from . The test proceeds as follows.
The one-sample test statistic, , for Kuiper's test is defined as follows. Let F be the continuous cumulative distribution function which is to be the null hypothesis . Denote by F n the empirical distribution function for n independent and identically distributed (i.i.d.) observations X i , which is defined as