Search results
Results from the WOW.Com Content Network
Example of direct replication and conceptual replication. There are two main types of replication in statistics. First, there is a type called “exact replication” (also called "direct replication"), which involves repeating the study as closely as possible to the original to see whether the original results can be precisely reproduced. [3]
The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...
Now, for each half-sample, choose which unit to take from each stratum according to the sign of the corresponding entry in H: that is, for half-sample h, we choose the first unit from stratum k if H hk = −1 and the second unit if H hk = +1. The orthogonality of rows of H ensures that our choices are uncorrelated between half-samples.
Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method.For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a statistical analysis of a data set should be achieved again with a high degree of reliability when the study is replicated.
The jackknife technique can be used to estimate (and correct) the bias of an estimator calculated over the entire sample. Suppose is the target parameter of interest, which is assumed to be some functional of the distribution of .
This pre-aggregated data set becomes the new sample data over which to draw samples with replacement. This method is similar to the Block Bootstrap, but the motivations and definitions of the blocks are very different. Under certain assumptions, the sample distribution should approximate the full bootstrapped scenario.
A test data set is a data set that is independent of the training data set, but that follows the same probability distribution as the training data set. If a model fit to the training data set also fits the test data set well, minimal overfitting has taken place (see figure below). A better fitting of the training data set as opposed to the ...
If the data is being persisted in a modern database then Change Data Capture is a simple matter of permissions. Two techniques are in common use: Tracking changes using database triggers; Reading the transaction log as, or shortly after, it is written. If the data is not in a modern database, CDC becomes a programming challenge.