enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    The free-space path loss (FSPL) formula derives from the Friis transmission formula. [3] This states that in a radio system consisting of a transmitting antenna transmitting radio waves to a receiving antenna, the ratio of radio wave power received P r {\displaystyle P_{r}} to the power transmitted P t {\displaystyle P_{t}} is:

  3. Log-distance path loss model - Wikipedia

    en.wikipedia.org/wiki/Log-distance_path_loss_model

    The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over long distance. While the log-distance model is suitable for longer distances, the short-distance path loss model is often used for indoor environments or very short outdoor distances.

  4. Path loss - Wikipedia

    en.wikipedia.org/wiki/Path_loss

    Among the most commonly used methods in the design of radio equipment such as antennas and feeds is the finite-difference time-domain method. The path loss in other frequency bands (medium wave (MW), shortwave (SW or HF), microwave (SHF)) is predicted with similar methods, though the concrete algorithms and formulas may be very different from ...

  5. Two-ray ground-reflection model - Wikipedia

    en.wikipedia.org/wiki/Two-ray_ground-reflection...

    From the figure the received line of sight component may be written as = {() /}and the ground reflected component may be written as = {() (+ ′) / + ′}where () is the transmitted signal, is the length of the direct line-of-sight (LOS) ray, + ′ is the length of the ground-reflected ray, is the combined antenna gain along the LOS path, is the combined antenna gain along the ground-reflected ...

  6. Hata model - Wikipedia

    en.wikipedia.org/wiki/Hata_model

    The Hata model is a radio propagation model for predicting the path loss of cellular transmissions in exterior environments, valid for microwave frequencies from 150 to 1500 MHz. It is an empirical formulation based on the data from the Okumura model , and is thus also commonly referred to as the Okumura–Hata model . [ 1 ]

  7. Okumura model - Wikipedia

    en.wikipedia.org/wiki/Okumura_Model

    where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, A mu is the median attenuation relative to free space, G(hte) is the base station antenna height gain factor, G(hre) is the mobile antenna height gain factor, and G AREA is the gain due to the type of environment. Note that the ...

  8. Link budget - Wikipedia

    en.wikipedia.org/wiki/Link_budget

    (dB) ≈ 36.6 dB + 20 log10[frequency (MHz)] + 20 log10[distance (miles)] These alternative forms can be derived by substituting wavelength with the ratio of propagation velocity ( c , approximately 3 × 10 8 m/s ) divided by frequency, and by inserting the proper conversion factors between km or miles and meters, and between MHz and (1/s).

  9. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    This path difference is (+) (′). The two separate waves will arrive at a point (infinitely far from these lattice planes) with the same phase , and hence undergo constructive interference , if and only if this path difference is equal to any integer value of the wavelength , i.e. n λ = ( A B + B C ) − ( A C ′ ) {\displaystyle n\lambda ...