enow.com Web Search

  1. Ads

    related to: fixed point method calculator calculus 2 tutorial for beginners free

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  3. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.

  4. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    The function () = + (shown in red) has the fixed points 0, 1, and 2. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed ...

  5. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  6. Common fixed point problem - Wikipedia

    en.wikipedia.org/wiki/Common_fixed_point_problem

    In his thesis, Boyce identified a pair of functions that commute under composition, but do not have a common fixed point, proving the fixed point conjecture to be false. [ 14 ] In 1963, Glenn Baxter and Joichi published a paper about the fixed points of the composite function h ( x ) = f ( g ( x ) ) = g ( f ( x ) ) {\displaystyle h(x)=f(g(x))=g ...

  7. Anderson acceleration - Wikipedia

    en.wikipedia.org/wiki/Anderson_acceleration

    In mathematics, Anderson acceleration, also called Anderson mixing, is a method for the acceleration of the convergence rate of fixed-point iterations. Introduced by Donald G. Anderson, [ 1 ] this technique can be used to find the solution to fixed point equations f ( x ) = x {\displaystyle f(x)=x} often arising in the field of computational ...

  8. Fixed-point property - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_property

    By the intermediate value theorem, there is some point x 0 with g(x 0) = 0, which is to say that f(x 0) − x 0 = 0, and so x 0 is a fixed point. The open interval does not have the fixed-point property. The mapping f(x) = x 2 has no fixed point on the interval (0,1).

  9. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    In the finite-dimensional case, the Lefschetz fixed-point theorem provided from 1926 a method for counting fixed points. In 1930, Brouwer's fixed-point theorem was generalized to Banach spaces. [41] This generalization is known as Schauder's fixed-point theorem, a result generalized further by S. Kakutani to set-valued functions. [42]

  1. Ads

    related to: fixed point method calculator calculus 2 tutorial for beginners free