Search results
Results from the WOW.Com Content Network
It fluoresces under UV light when intercalated into the major groove of DNA (or RNA). By running DNA through an EtBr-treated gel and visualizing it with UV light, any band containing more than ~20 ng DNA becomes distinctly visible.
All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide, each of which contains a pentose sugar (ribose or deoxyribose), a phosphate group, and a nucleobase. [16]
The presence of this functional group causes the helix to mostly take the A-form geometry, [11] although in single strand dinucleotide contexts, RNA can rarely also adopt the B-form most commonly observed in DNA. [12] The A-form geometry results in a very deep and narrow major groove and a shallow and wide minor groove. [13]
Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.
First, an RNA polymerase along with general transcription factors binds to the promoter region of the gene to form a closed complex called the preinitiation complex. The subsequent transition of the complex from the closed state to the open state results in the melting or separation of the two DNA strands and the positioning of the template ...
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Nucleic acid synthesis is catalyzed by either DNA polymerase or RNA polymerase for DNA and RNA synthesis respectively. [16] These enzymes covalently link the free -OH group on the 3’ carbon of a growing chain of nucleotides to the α-phosphate on the 5’ carbon of the next (d)NTP, releasing the β- and γ-phosphate groups as pyrophosphate ...
DNA is composed of base pairs in which adenine pairs with thymine and guanine pairs with cytosine. While DNA serves as template for production of ribonucleic acid (RNA), RNA is usually responsible for making protein. The process of making RNA from DNA is called transcription. RNA uses a similar set of bases except that thymine is replaced with ...