Search results
Results from the WOW.Com Content Network
The individual absorption spectra of major greenhouse gases plus Rayleigh scattering are shown in the lower panel. [1] An atmospheric window is a region of the electromagnetic spectrum that can pass through the atmosphere of Earth. The optical, infrared and radio windows comprise the three main atmospheric windows. [2]
Thus, the Earth's surface is up to 33 °C warmer than it would be without the atmosphere. Moreover, the observation of longwave radiation demonstrates that the greenhouse effect exists in the Earth's atmosphere. These windows also allow orbiting satellites to measure the IR energy leaving the planet, the SSTs, and other important matters.
Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere , including infrared analyzing and manometry .
Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]
The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface.
As many as 10 points may be awarded for 1–100 percent roof coverage with either vegetation or highly reflective materials or both. The basis in physics of a high emittance is quite questionable, since it merely describes a material which easily radiates infrared wavelength heat to the environment, contributing to the greenhouse effect.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Earth constantly absorbs energy from sunlight and emits thermal radiation as infrared light. In the long run, Earth radiates the same amount of energy per second as it absorbs, because the amount of thermal radiation emitted depends upon temperature: If Earth absorbs more energy per second than it radiates, Earth heats up and the thermal radiation will increase, until balance is restored; if ...