Search results
Results from the WOW.Com Content Network
1 nautical mile per hour (by definition), 1 852.000 metres per hour (exactly), [5] 0.51444 metres per second (approximately), 1.15078 miles per hour (approximately), 20.25372 inches per second (approximately) 1.68781 feet per second (approximately). The length of the internationally agreed nautical mile is 1 852 m.
mile per hour: mph ≡ 1 mi/h = 0.447 04 m/s: mile per minute: mpm ≡ 1 mi/min = 26.8224 m/s: mile per second: mps ≡ 1 mi/s = 1 609.344 m/s: speed of light in vacuum: c: ≡ 299 792 458 m/s = 299 792 458 m/s: speed of sound in air: s: 1225 to 1062 km/h (761–660 mph or 661–574 kn) [note 1] ≈ 340 to 295 m/s: Note
The Jiffy is the amount of time light takes to travel one femtometre (about the diameter of a nucleon). The Planck time is the time that light takes to travel one Planck length. The TU (for time unit) is a unit of time defined as 1024 μs for use in engineering. The svedberg is a time unit used for sedimentation rates (usually
For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below: = . Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the ...
Pace [6] in minutes per kilometre or mile vs. slope angle resulting from Naismith's rule [7] for basal speeds of 5 and 4 km / h. [n 1] The original Naismith's rule from 1892 says that one should allow one hour per three miles on the map and an additional hour per 2000 feet of ascent. [1] [4] It is included in the last sentence of his report ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In Canada, reference wind pressures are used in design and are based on the "mean hourly" wind speed having a probability of being exceeded per year of 1 in 50. The reference wind pressure q is calculated using the equation q = ρv 2 / 2 , where ρ is the air density and v is the wind speed.
For premium support please call: 800-290-4726 more ways to reach us