enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  4. Fundamental solution - Wikipedia

    en.wikipedia.org/wiki/Fundamental_solution

    Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.

  5. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...

  6. Bateman transform - Wikipedia

    en.wikipedia.org/wiki/Bateman_transform

    In the mathematical study of partial differential equations, the Bateman transform is a method for solving the Laplace equation in four dimensions and wave equation in three by using a line integral of a holomorphic function in three complex variables. It is named after the mathematician Harry Bateman, who first published the result in (Bateman ...

  7. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field v = ( x y , y z , z x ) {\displaystyle {\bf {v}}=(xy,yz,zx)} satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a ...

  8. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  9. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...