Search results
Results from the WOW.Com Content Network
The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering. A CSTR often refers to a model used to estimate the key unit operation variables when using ...
When a reactor is brought into operation, either for the first time or after a shutdown, it is in a transient state, and key process variables change with time. There are three idealised models used to estimate the most important process variables of different chemical reactors: Batch reactor model, Continuous stirred-tank reactor model (CSTR), and
Reactors can be divided into two broad categories, batch reactors and continuous reactors. [1] Batch reactors are stirred tanks sufficiently large to handle the full inventory of a complete batch cycle. In some cases, batch reactors may be operated in semi batch mode where one chemical is charged to the vessel and a second chemical is added slowly.
Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide ... Continuous stirred-tank reactor This page was last edited on ...
General structure of a continuous stirred-tank type bioreactor. On the basis of mode of operation, a bioreactor may be classified as batch, fed batch or continuous (e.g. a continuous stirred-tank reactor model). An example of a continuous bioreactor is the chemostat. [citation needed]
The residence time scale can take the form of a convection time scale, such as volumetric flow rate through the reactor for continuous (plug flow or stirred tank) or semibatch chemical processes: D a I = reaction rate convective mass transport rate {\displaystyle \mathrm {Da_{\mathrm {I} }} ={\frac {\text{reaction rate}}{\text{convective mass ...
Each plug of differential volume is considered as a separate entity, effectively an infinitesimally small continuous stirred tank reactor, limiting to zero volume. As it flows down the tubular PFR, the residence time ( τ {\displaystyle \tau } ) of the plug is a function of its position in the reactor.
A combination of reactors is often termed a reactor structure. An example of the reactors that are considered for this theory are Continuous flow stirred-tank reactor (CSTR) and a Plug flow reactor model (PFR). Knowledge of the AR helps to address two areas in chemical reactor design: