Search results
Results from the WOW.Com Content Network
When the vehicle is moving at low speed or the propeller is rotating at high speed, the advance ratio is a low number. The advance ratio is a useful non-dimensional quantity in helicopter and propeller theory, since propellers and rotors will experience the same angle of attack on every blade airfoil section at the same advance ratio regardless ...
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Flow velocity vector field : u = (,) m s −1 [L][T] −1 Velocity pseudovector field : ω = s −1 [T] −1 ...
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):
The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit. Transonic: 0.8–1.2
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Darcy-Weisbach's accuracy and universal applicability makes it the ideal formula for flow in pipes. The advantages of the equation are as follows: [1] It is based on fundamentals. It is dimensionally consistent. It is useful for any fluid, including oil, gas, brine, and sludges. It can be derived analytically in the laminar flow region.