enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  3. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...

  5. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A balanced binary tree is a binary tree structure in which the left and right subtrees of every node differ in height (the number of edges from the top-most node to the farthest node in a subtree) by no more than 1 (or the skew is no greater than 1). [22]

  6. Ternary tree - Wikipedia

    en.wikipedia.org/wiki/Ternary_tree

    Depth - Length of the path from the root to the node. The set of all nodes at a given depth is sometimes called a level of the tree. The root node is at depth zero. Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has ...

  7. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    The randomized binary search tree, introduced by Martínez and Roura subsequently to the work of Aragon and Seidel on treaps, [7] stores the same nodes with the same random distribution of tree shape, but maintains different information within the nodes of the tree in order to maintain its randomized structure.

  8. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    The level ancestor query LA(v,d) requests the ancestor of node v at depth d, where the depth of a node v in a tree is the number of edges on the shortest path from the root of the tree to node v. It is possible to solve this problem in constant time per query, after a preprocessing algorithm that takes O( n ) and that builds a data structure ...

  9. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies: