Search results
Results from the WOW.Com Content Network
In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation.
The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel. Thus through transformations students learn about Euclidean plane isometry. For instance, consider reflection in a vertical line and a ...
Glide reflections, denoted by G c,v,w, where c is a point in the plane, v is a unit vector in R 2, and w is non-null a vector perpendicular to v are a combination of a reflection in the line described by c and v, followed by a translation along w. That is,
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...
In wider contexts, a symmetry group may be any kind of transformation group, or automorphism group. Each type of mathematical structure has invertible mappings which preserve the structure. Conversely, specifying the symmetry group can define the structure, or at least clarify the meaning of geometric congruence or invariance; this is one way ...
Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.
The composition of two offset point reflections in 2-dimensions is a translation. The composition of two point reflections is a translation. [3] Specifically, point reflection at p followed by point reflection at q is translation by the vector 2(q − p). The set consisting of all point reflections and translations is Lie subgroup of the ...