enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  3. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    where C is the capacitance of the capacitor. Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0. The time required for the voltage to fall to ⁠ V 0 / e ⁠ is called the RC time constant and is given by, [1]

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Combining the equation for capacitance with the above equation for the energy stored in a capacitor, for a flat-plate capacitor the energy stored is: = =. where is the energy, in joules; is the capacitance, in farads; and is the voltage, in volts.

  5. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  6. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor smaller than any of its components.

  7. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.

  8. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    In a series configuration, X C and X L cancel each other out. In real, rather than idealised, components, the current is opposed, mostly by the resistance of the coil windings. Thus, the current supplied to a series resonant circuit is maximal at resonance. In the limit as f → f 0 current is maximal. Circuit impedance is minimal.

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.