Search results
Results from the WOW.Com Content Network
Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the ... one could calculate the intensity of the kinetic energy ...
Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.
Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
The classical (black) curve diverges from observed intensity at high frequencies (short wavelengths). In physics , Planck's law (also Planck radiation law [ 1 ] : 1305 ) describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T , when there is no net flow of matter or ...
Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity". Spectral exitance: M e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Radiant exitance of a surface per
Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity". Spectral exitance: M e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Radiant exitance of a surface per