enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  3. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Hence, the main functional application of Gibbs energy from a thermodynamic database is its change in value during the formation of a compound from the standard-state elements, or for any standard chemical reaction (ΔG° form or ΔG° rx). The SI units of Gibbs energy are the same as for enthalpy (J/mol).

  4. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  5. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  6. Redox gradient - Wikipedia

    en.wikipedia.org/wiki/Redox_gradient

    Redox gradients are commonly found in the environment as functions of both space and time, [9] [8] particularly in soils and aquatic environments. [8] [6] Gradients are caused by varying physiochemical properties including availability of oxygen, soil hydrology, chemical species present, and microbial processes.

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy. The Gibbs free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy, p is the pressure, and V is the ...

  8. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    IUPAC has suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. [1] The area of physical organic chemistry which deals with such relations is commonly referred to as 'linear free-energy relationships'.

  9. Pitzer equations - Wikipedia

    en.wikipedia.org/wiki/Pitzer_equations

    The parameters of the Pitzer equations are linear combinations of parameters, of a virial expansion of the excess Gibbs free energy, which characterise interactions amongst ions and solvent. The derivation is thermodynamically rigorous at a given level of expansion.