Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the ...
The group of scalar n-by-n matrices over a ring R is the centralizer of the subset of n-by-n matrix units in the set of n-by-n matrices over R. [2] The matrix norm (induced by the same two vector norms) of a matrix unit is equal to 1. When multiplied by another matrix, it isolates a specific row or column in arbitrary position.
This means that, treating the input n×n matrices as block 2 × 2 matrices, the task of multiplying n×n matrices can be reduced to 7 subproblems of multiplying n/2×n/2 matrices. Applying this recursively gives an algorithm needing O ( n log 2 7 ) ≈ O ( n 2.807 ) {\displaystyle O(n^{\log _{2}7})\approx O(n^{2.807})} field operations.
The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.
This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.