Search results
Results from the WOW.Com Content Network
Hückel's rule is not valid for many compounds containing more than one ring. For example, pyrene and trans-bicalicene contain 16 conjugated electrons (8 bonds), and coronene contains 24 conjugated electrons (12 bonds). Both of these polycyclic molecules are aromatic, even though they fail the 4n + 2 rule. Indeed, Hückel's rule can only be ...
In fact, all cyclic conjugated hydrocarbons with a total of 4n π-electrons share this molecular orbital pattern, and this forms the basis of Hückel's rule. Dewar reactivity numbers deriving from the Hückel approach correctly predict the reactivity of aromatic systems with nucleophiles and electrophiles.
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.
It is seen that with one MO at the bottom and then groups of degenerate pairs, the Hückel systems will accommodate 4n + 2 electrons, following the ordinary Hückel rule. However, in contrast, the Möbius Systems have degenerate pairs of molecular orbitals starting at the circle bottom and thus will accommodate 4 n electrons.
The extended Hückel method is a semiempirical quantum chemistry method, developed by Roald Hoffmann since 1963. [1] It is based on the Hückel method but, while the original Hückel method only considers pi orbitals, the extended method also includes the sigma orbitals.
The famous Hückel 4n+2 rule for determining whether ring molecules composed of C=C bonds would show aromatic properties was first stated clearly by Doering in a 1951 article on tropolone. [6] Tropolone had been recognised as an aromatic molecule by Dewar in 1945. In 1936, Hückel developed the theory of π-conjugated biradicals (non-Kekulé ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.