enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

  3. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    Therefore, one strategy to prove that two objects are isomorphic is to show that they satisfy the same universal property. Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U ...

  4. Pushout (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pushout_(category_theory)

    The pushout of these maps is the direct sum of A and B. Generalizing to the case where f and g are arbitrary homomorphisms from a common domain Z, one obtains for the pushout a quotient group of the direct sum; namely, we mod out by the subgroup consisting of pairs (f(z), −g(z)). Thus we have "glued" along the images of Z under f and g.

  5. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  6. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces), the coproduct, called the direct sum, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides ...

  7. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    The counit of this adjunction is simply the universal cone from lim F to F. If the index category J is connected (and nonempty) then the unit of the adjunction is an isomorphism so that lim is a left inverse of Δ. This fails if J is not connected. For example, if J is a discrete category, the components of the unit are the diagonal morphisms ...

  8. Disjoint union (topology) - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union_(topology)

    Characteristic property of disjoint unions. This shows that the disjoint union is the coproduct in the category of topological spaces. It follows from the above universal property that a map f : X → Y is continuous iff f i = f o φ i is continuous for all i in I. In addition to being continuous, the canonical injections φ i : X i → X are ...

  9. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    Universal property of the product Whether a product exists may depend on C {\displaystyle C} or on X 1 {\displaystyle X_{1}} and X 2 . {\displaystyle X_{2}.} If it does exist, it is unique up to canonical isomorphism , because of the universal property, so one may speak of the product.