enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural vibrations are different from forced vibrations which happen at the frequency of an applied force (forced frequency). If the forced frequency is equal to the natural frequency, the vibrations' amplitude increases manyfold. This phenomenon is known as resonance where the system's response to the applied frequency is amplified.. [1] A ...

  3. Rayleigh's quotient in vibrations analysis - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_quotient_in...

    The example shows how the Rayleigh's quotient is capable of getting an accurate estimation of the lowest natural frequency. The practice of using the static displacement vector as a trial vector is valid as the static displacement vector tends to resemble the lowest vibration mode.

  4. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  5. Vibration - Wikipedia

    en.wikipedia.org/wiki/Vibration

    Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).

  6. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    For example, a vibrating rope in 2D space is defined by a single-frequency (1D axial displacement), but a vibrating rope in 3D space is defined by two frequencies (2D axial displacement). For a given amplitude on the modal variable, each mode will store a specific amount of energy because of the sinusoidal excitation.

  7. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being applied on the mass, i.e. the additional constant force cannot change the period of oscillation.

  8. Modal analysis - Wikipedia

    en.wikipedia.org/wiki/Modal_analysis

    In structural engineering, modal analysis uses the overall mass and stiffness of a structure to find the various periods at which it will naturally resonate.These periods of vibration are very important to note in earthquake engineering, as it is imperative that a building's natural frequency does not match the frequency of expected earthquakes in the region in which the building is to be ...

  9. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .