Search results
Results from the WOW.Com Content Network
A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) [a] is an electrical safety device, more specifically a form of Earth-leakage circuit breaker, that interrupts an electrical circuit when the current passing through line and neutral conductors of a circuit is not equal (the term residual relating to the imbalance), therefore ...
To address this the IEC introduced the term residual current device (RCD). Residual current refers to any residue when comparing current in the outbound and return currents in the circuit. In single phase circuits this is simply the line or phase current minus the neutral current. In a 3 phase circuit all current carrying conductors must be sensed.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
Breakers for protections against earth faults too small to trip an over-current device: Residual-current device (RCD), or residual-current circuit breaker (RCCB) — detects current imbalance, but does not provide over-current protection. In the United States and Canada, these are called ground fault circuit interrupters (GFCI).
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Residual-current device; Retrieved from "https: ...
A residual-current device (RCD), or residual-current circuit breaker (RCCB), is a device that instantly breaks an electric circuit to prevent serious harm from an ongoing electric shock. A fuse or circuit breaker also does that, 'instantly' of course, is subject to qualification.
Speed: Devices must function quickly to reduce equipment damage and fault duration, with only very precise intentional time delays. Sensitivity: Devices must detect even the smallest value of faults and respond. Economy: Devices must provide maximum protection at minimum cost. Simplicity: Devices must minimize protection circuitry and equipment.
Electrical equipment may be designed with a floating ground for one of several reasons. One is safety. For example, a low-voltage DC power supply, such as a mobile phone charger, is connected to the mains through a transformer of one type or another, and there is no direct electrical connection between the current return path on the low-voltage side and physical ground (earth).