enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. [2] [3] Some sources use the term existentialization to refer to existential quantification. [4] Quantification in general is covered in the article on quantification (logic).

  3. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    The two most common quantifiers are the universal quantifier and the existential quantifier. The traditional symbol for the universal quantifier is " ∀ ", a rotated letter " A ", which stands for "for all" or "all".

  4. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [ 2 ] or "∃ =1 ". For example, the formal statement

  5. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    Quantifier symbols: ∀ for universal quantification, and ∃ for existential quantification; Logical connectives: ∧ for conjunction, ∨ for disjunction, → for implication, ↔ for biconditional, ¬ for negation. Some authors [11] use Cpq instead of → and Epq instead of ↔, especially in contexts where → is used for other purposes.

  6. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as Σ 1 1 {\displaystyle ...

  7. Existential theory of the reals - Wikipedia

    en.wikipedia.org/wiki/Existential_theory_of_the...

    the universal quantifier ∀ and the existential quantifier ∃; A sequence of these symbols forms a sentence that belongs to the first-order theory of the reals if it is grammatically well formed, all its variables are properly quantified, and (when interpreted as a mathematical statement about the real numbers) it is a true statement.

  8. Disjunction and existence properties - Wikipedia

    en.wikipedia.org/wiki/Disjunction_and_existence...

    The key step is to find a bound on the existential quantifier in a formula (∃x)A(x), producing a bounded existential formula (∃x<n)A(x). The bounded formula may then be written as a finite disjunction A(1)∨A(2)∨...∨A(n). Finally, disjunction elimination may be used to show that one of the disjuncts is provable.

  9. Ontological commitment - Wikipedia

    en.wikipedia.org/wiki/Ontological_commitment

    Willard Van Orman Quine provided an early and influential formulation of ontological commitment: [4]. If one affirms a statement using a name or other singular term, or an initial phrase of 'existential quantification', like 'There are some so-and-sos', then one must either (1) admit that one is committed to the existence of things answering to the singular term or satisfying the descriptions ...