Search results
Results from the WOW.Com Content Network
function simple memory bounded A *-star (problem): path queue: set of nodes, ordered by f-cost; begin queue. insert (problem. root-node); while True do begin if queue. empty then return failure; //there is no solution that fits in the given memory node:= queue. begin (); // min-f-cost-node if problem. is-goal (node) then return success; s:= next-successor (node) if! problem. is-goal (s ...
The space complexity of A* is roughly the same as that of all other graph search algorithms, as it keeps all generated nodes in memory. [1] In practice, this turns out to be the biggest drawback of the A* search, leading to the development of memory-bounded heuristic searches, such as Iterative deepening A* , memory-bounded A*, and SMA* .
Memory bound refers to a situation in which the time to complete a given computational problem is decided primarily by the amount of free memory required to hold the working data. This is in contrast to algorithms that are compute-bound , where the number of elementary computation steps is the deciding factor.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
The memory-bounded speedup model is the first work to reveal that memory is the performance constraint for high-end computing and presents a quantitative mathematical formulation for the trade-off between memory and computing. It is based on the memory-bounded function,W=G(n), where W is the work and thus also the computation for most applications.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web. AOL.
a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.