Search results
Results from the WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In mathematics, least squares function approximation applies the principle of least squares to function approximation, by means of a weighted sum of other functions.The best approximation can be defined as that which minimizes the difference between the original function and the approximation; for a least-squares approach the quality of the approximation is measured in terms of the squared ...
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:
The technique of the previous example may also be applied to other Dirichlet series. If a n = μ ( n ) {\displaystyle a_{n}=\mu (n)} is the Möbius function and ϕ ( x ) = x − s {\displaystyle \phi (x)=x^{-s}} , then A ( x ) = M ( x ) = ∑ n ≤ x μ ( n ) {\displaystyle A(x)=M(x)=\sum _{n\leq x}\mu (n)} is Mertens function and
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is in numerical integration, i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule. It can ...
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.
The vertical scale is not constant left to right; click on image for a detailed description. In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function.