enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A field line diagram is necessarily an incomplete description of a vector field, since it gives no information about the field between the drawn field lines, and the choice of how many and which lines to show determines how much useful information the diagram gives. An individual field line shows the direction of the vector field but not the ...

  3. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .

  4. Anode - Wikipedia

    en.wikipedia.org/wiki/Anode

    The direction of conventional current (the flow of positive charges) in a circuit is opposite to the direction of electron flow, so (negatively charged) electrons flow from the anode of a galvanic cell, into an outside or external circuit connected to the cell. For example, the end of a household battery marked with a "+" is the cathode (while ...

  5. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    The electrons, the charge carriers in an electrical circuit, flow in the opposite direction of the conventional electric current. The symbol for a battery in a circuit diagram. The conventional direction of current, also known as conventional current, [10] [11] is arbitrarily defined as the direction in which positive charges flow.

  6. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    The field is depicted by electric field lines, lines which follow the direction of the electric field in space. The induced charge distribution in the sheet is not shown. The electric field is defined at each point in space as the force that would be experienced by an infinitesimally small stationary test charge at that point divided by the charge.

  7. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field .

  8. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    These electrons are not associated with specific atoms, so when an electric field is applied, they are free to move like a gas (called Fermi gas) [137] through the material much like free electrons. Because of collisions between electrons and atoms, the drift velocity of electrons in a conductor is on the order of millimeters per second.

  9. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    Drift current is caused by the electric force: Charged particles get pushed by an electric field. Electrons, being negatively charged, get pushed in the opposite direction to the electric field, while holes get pushed in the same direction as the electric field, but the resulting conventional current points in the same direction as the electric ...